PROBABILITY GROUPS

Anush Tserunyan

University of Illinois at Urbana-Champaign
In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.
Averaging over the group

- In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.

- Such is an invariant probability measure (i.p.m.) on the group. (Hooray for compact groups!)
In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.

Such is an invariant probability measure (i.p.m.) on the group. (Hooray for compact groups!)

What about countable groups?
Averaging over the group

- In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.

- Such is an invariant probability measure (i.p.m.) on the group. (Hooray for compact groups!)

- What about countable groups? Of course, they can't admit a (countably additive) i.p.m., but some of them admit finitely additive i.p.m., and those are exactly the amenable groups.
In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.

Such is an invariant probability measure (i.p.m.) on the group. (Hooray for compact groups!)

What about countable groups? Of course, they can’t admit a (countably additive) i.p.m., but some of them admit finitely additive i.p.m., and those are exactly the amenable groups.

The down-to-earth predecessor of this finitely additive i.p.m. is the density function, which, for \(\mathbb{Z} \), can be defined by

\[
d(A) := \lim_{n \to \infty} \frac{1}{|[-n, n]|} |A \cap [-n, n]|
\]

for \(A \subseteq \mathbb{Z} \), whenever the limit exists.
In measurable dynamics, when studying actions of groups on probability spaces, one often wishes to have an invariant averaging mechanism over the group.

Such is an invariant probability measure (i.p.m.) on the group. (Hooray for compact groups!)

What about countable groups? Of course, they can’t admit a (countably additive) i.p.m., but some of them admit finitely additive i.p.m., and those are exactly the amenable groups.

The down-to-earth predecessor of this finitely additive i.p.m. is the density function, which, for \(\mathbb{Z} \), can be defined by

\[
d(A) := \lim_{n \to \infty} \frac{1}{|[-n, n]|} |A \cap [-n, n]| = \lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} \mathbb{1}_{A}(k),
\]

for \(A \subseteq \mathbb{Z} \), whenever the limit exists.
This averaging gadget is used to express, for example, the mean ergodic theorem: for an ergodic action $\mathbb{Z} \curvearrowright (X, \nu)$ via $T : X \rightarrow X$ and any $f \in L^2(X, \nu)$,

$$\lim_{n \rightarrow \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} T^k(f) = \int_X f(x) d\nu(x)$$

time average = space average
Integrating over the group — wishful thinking

- This averaging gadget is used to express, for example, the mean ergodic theorem: for an ergodic action $\mathbb{Z} \curvearrowright (X, \nu)$ via $T : X \to X$ and any $f \in L^2(X, \nu)$,

$$
\lim_{n \to \infty} \frac{1}{|[−n, n]|} \sum_{k=−n}^{n} T^k(f) = \int_X f(x) d\nu(x)
$$

time average = space average

- Now, wouldn’t it be good if $\lim_{n \to \infty} \frac{1}{|[−n, n]|} \sum_{k=−n}^{n}$ could be replaced by a genuine \int_G?
This averaging gadget is used to express, for example, the mean ergodic theorem: for an ergodic action \(\mathbb{Z} \curvearrowright (X, \nu) \) via \(T : X \to X \) and any \(f \in L^2(X, \nu) \),

\[
\lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} T^k(f) = \int_X f(x) d\nu(x)
\]

time average = space average

Now, wouldn’t it be good if \(\lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} \) could be replaced by a genuine \(\int_G \)?

In a certain sense, this can actually be done using ultraproducts!
Let α be an ultrafilter on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}.
Let α be an ultrafilter on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}. Further assume that α is non-principal, i.e. not a Dirac point measure.
Ultraproducts overview

- Let α be an ultrafilter on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}. Further assume that α is non-principal, i.e. not a Dirac point measure.

- Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of sets, and for any $x, y \in \prod_{n \in \mathbb{N}} X_n$, put
 $x =_\alpha y :\iff x(n) = y(n)$ for α-a.e. $n \in \mathbb{N}$.
Let α be an ultrafilter on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}. Further assume that α is non-principal, i.e. not a Dirac point measure.

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of sets, and for any $x, y \in \prod_{n \in \mathbb{N}} X_n$, put

$$x =_{\alpha} y :\iff x(n) = y(n) \text{ for } \alpha\text{-a.e. } n \in \mathbb{N}.$$

The space $\prod_{n \in \mathbb{N}} X_n / =_\alpha$ is called the ultraproduct of $(X_n)_{n \in \mathbb{N}}$ over α.

Theorem (Łoś) A first-order statement is true in the ultraproduct X if and only if it is true in X_n for α-a.e. $n \in \mathbb{N}$.

If each X_n is a group (G_n, e_n, \cdot_n), the ultraproduct is also a group with identity $\lbrack (e_n)_{n \in \mathbb{N}} \rbrack_\alpha$ and coordinate-wise multiplication.
Let α be an ultrafilter on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}. Further assume that α is non-principal, i.e. not a Dirac point measure.

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of sets, and for any $x, y \in \prod_{n \in \mathbb{N}} X_n$, put
\[x =_\alpha y :\iff x(n) = y(n) \text{ for } \alpha\text{-a.e. } n \in \mathbb{N}. \]

The space $\prod_{n \in \mathbb{N}} X_n / =_\alpha$ is called the ultraproduct of $(X_n)_{n \in \mathbb{N}}$ over α.

If each X_n is a group (G_n, e_n, \cdot_n), the ultraproduct is also a group with identity $[(e_n)_{n \in \mathbb{N}}]_\alpha$ and coordinate-wise multiplication.
Let α be an ultralimit on \mathbb{N}, i.e. a $\{0, 1\}$-valued finitely additive probability measure defined on all subsets of \mathbb{N}. Further assume that α is non-principal, i.e. not a Dirac point measure.

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of sets, and for any $x, y \in \prod_{n \in \mathbb{N}} X_n$, put $x =_\alpha y :\iff x(n) = y(n)$ for α-a.e. $n \in \mathbb{N}$.

The space $\prod_{n \in \mathbb{N}} X_n / =_\alpha$ is called the ultraproduct of $(X_n)_{n \in \mathbb{N}}$ over α.

If each X_n is a group (G_n, e_n, \cdot_n), the ultraproduct is also a group with identity $[(e_n)_{n \in \mathbb{N}}]_\alpha$ and coordinate-wise multiplication.

More generally, we have the so-called transfer principle:

Theorem (Łoś)

A first-order statement is true in the ultraproduct X if and only if it is true in X_n for α-a.e. $n \in \mathbb{N}$.
Furthermore, if each X_n is a probability space (X_n, B_n, μ_n), then the ultraproduct is too with

$$\lim_{n \to \alpha} \mu_n(B_n).$$
Finitely additive measures $\xrightarrow{\text{ultraproduct}}$ countably additive measure

Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with

- the σ-algebra \mathcal{B} generated by the box-sets: $\left[\prod_{n \in \mathbb{N}} B_n \right]_\alpha$, for $B_n \in \mathcal{B}_n$, and the so-called Loeb measure λ on it defined by $\lambda(\cdots) = \lim_{n \to \alpha} \mu_n(B_n)$.

The magic of ultraproducts is that even if the μ_n's were only finitely additive, the Loeb measure λ would still be countably additive!

Thus, we could start with an amenable group Γ equipped with a finitely additive i.p.m. μ, take its ultrapower $G := \Gamma^\mathbb{N} / = \alpha$ and get a much larger group G with a genuine countably additive i.p.m. λ.

Note that $\Gamma \hookrightarrow G.$

Moreover, for any $A \subseteq \Gamma$, $\mu(A) = \lambda(\cdots)$.
Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with
- the σ-algebra \mathcal{B} generated by the box-sets: $\left[\prod_{n \in \mathbb{N}} B_n \right]_\alpha$, for $B_n \in \mathcal{B}_n$,
- and the so-called Loeb measure λ on it defined by
\[
\lambda\left(\left[\prod_{n \in \mathbb{N}} B_n \right]_\alpha \right) = \lim_{n \to \alpha} \mu_n(B_n).
\]
Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with
- the σ-algebra \mathcal{B} generated by the box-sets: $[\prod_{n \in \mathbb{N}} B_n]_\alpha$, for $B_n \in \mathcal{B}_n$,
- and the so-called Loeb measure λ on it defined by

$$\lambda([\prod_{n \in \mathbb{N}} B_n]_\alpha) = \lim_{n \to \alpha} \mu_n(B_n).$$

The magic of ultraproducts is that even if the μ_n’s were only finitely additive, the Loeb measure λ would still be countably additive!
Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with

- the σ-algebra \mathcal{B} generated by the box-sets: $[\prod_{n \in \mathbb{N}} B_n]_\alpha$, for $B_n \in \mathcal{B}_n$,

- and the so-called Loeb measure λ on it defined by

$$
\lambda\left([\prod_{n \in \mathbb{N}} B_n]_\alpha\right) = \lim_{n \to \alpha} \mu_n(B_n).
$$

The magic of ultraproducts is that even if the μ_n’s were only finitely additive, the Loeb measure λ would still be countably additive!

Thus, we could start with an amenable group Γ equipped with a finitely additive i.p.m. μ, take its ultrapower $G := \Gamma^\mathbb{N} / \sim_\alpha$ and get a much larger group G with a genuine countably additive i.p.m. λ.

"Finitely additive measures $\xrightarrow{\text{ultraproduct}}$ countably additive measure"
Finitely additive measures $\xrightarrow{\text{ultraproduct}}$ countably additive measure

- Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with
 - the σ-algebra \mathcal{B} generated by the box-sets: $\left[\prod_{n \in \mathbb{N}} B_n \right]_{\alpha}$, for $B_n \in \mathcal{B}_n$,
 - and the so-called Loeb measure λ on it defined by
 $$\lambda \left(\left[\prod_{n \in \mathbb{N}} B_n \right]_{\alpha} \right) = \lim_{n \to \alpha} \mu_n(B_n).$$

- The magic of ultraproducts is that even if the μ_n's were only finitely additive, the Loeb measure λ would still be countably additive!

- Thus, we could start with an amenable group Γ equipped with a finitely additive i.p.m. μ, take its ultrapower $G := \Gamma^\mathbb{N} / \equiv_\alpha$ and get a much larger group G with a genuine countably additive i.p.m. λ.

- Note that $\Gamma \hookrightarrow G$.
Furthermore, if each X_n is a probability space $(X_n, \mathcal{B}_n, \mu_n)$, then the ultraproduct is too with

- the σ-algebra \mathcal{B} generated by the box-sets: $\left[\prod_{n \in \mathbb{N}} B_n \right]_{\alpha}$, for $B_n \in \mathcal{B}_n$,
- and the so-called Loeb measure λ on it defined by

$$\lambda\left(\left[\prod_{n \in \mathbb{N}} B_n \right]_{\alpha}\right) = \lim_{n \to \alpha} \mu_n(B_n).$$

The magic of ultraproducts is that even if the μ_n's were only finitely additive, the Loeb measure λ would still be countably additive!

Thus, we could start with an amenable group Γ equipped with a finitely additive i.p.m. μ, take its ultrapower $G := \Gamma^\mathbb{N}/\equiv_{\alpha}$ and get a much larger group G with a genuine countably additive i.p.m. λ.

Note that $\Gamma \hookrightarrow G$.

Moreover, for any $A \subseteq \Gamma$, $\mu(A) = \lambda\left(\left[A^\mathbb{N} \right]_{\alpha}\right)$.
The mean ergodic theorem for this G now looks like this:

Mean Ergodic Theorem

Let $a : G \curvearrowright (X, \nu)$ be a measure-preserving ergodic action of G on a probability space (X, ν). Then, for every $f \in L^2(X, \nu)$ and ν-a.e. $x \in X$,

$$\int_G (g \cdot a f)(x) d\lambda(g) = \int_X f(y) d\nu(y).$$
The mean ergodic theorem for this G now looks like this:

Mean Ergodic Theorem

Let $a : G \curvearrowright (X, \nu)$ be a measure-preserving ergodic action of G on a probability space (X, ν). Then, for every $f \in L^2(X, \nu)$ and ν-a.e. $x \in X$,

$$\int_G (g \cdot a f)(x) d\lambda(g) = \int_X f(y) d\nu(y).$$

Proof.
Application 1: trivializing the mean ergodic theorem

The mean ergodic theorem for this G now looks like this:

Mean Ergodic Theorem

Let $a : G \curvearrowright (X, \nu)$ be a measure-preserving ergodic action of G on a probability space (X, ν). Then, for every $f \in L^2(X, \nu)$ and ν-a.e. $x \in X$,

$$\int_G (g \cdot a f)(x) d\lambda(g) = \int_X f(y) d\nu(y).$$

Proof. Dummy integration and Fubini’s theorem.
The mean ergodic theorem for this G now looks like this:

Mean Ergodic Theorem

Let $a : G \curvearrowright (X, \nu)$ be a measure-preserving ergodic action of G on a probability space (X, ν). Then, for every $f \in L^2(X, \nu)$ and ν-a.e. $x \in X$,

$$\int_G (g \cdot_a f)(x) d\lambda(g) = \int_X f(y) d\nu(y).$$

Proof. Dummy integration and Fubini’s theorem.

This immediately implies the usual statement of the mean ergodic theorem for Γ (with the awkward averaging gadget).
Application 2

Alternative to Furstenberg correspondence principle
Recurrence in countable groups

One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

Theorem (Szemerédi)

Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions.
One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

Theorem (Szemerédi)

Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions. In other words, $\forall k \geq 1 \exists n \in \mathbb{N}$

$$A \cap (A - n) \cap (A - 2n) \cap ... \cap (A - kn) \neq \emptyset.$$
One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

\textbf{Theorem (Szemerédi)}

Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains \textit{arbitrarily long arithmetic progressions}. In other words, $\forall k \geq 1 \exists n \in \mathbb{N}$

$$A \cap (A - n) \cap (A - 2n) \cap \ldots \cap (A - kn) \neq \emptyset.$$

Here $\Gamma := \mathbb{Z}$ and upper density is $\overline{d}(A) := \limsup_{n \to \infty} \frac{|A \cap [-n, n]|}{|[-n, n]|}$.

[Table: Theorem (Szemerédi)]
Recurrence in countable groups

One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

Theorem (Szemerédi)

Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions. In other words, $\forall k \geq 1 \exists n \in \mathbb{N}$

$$A \cap (A - n) \cap (A - 2n) \cap \ldots \cap (A - kn) \neq \emptyset.$$

- Here $\Gamma := \mathbb{Z}$ and upper density is $\overline{d}(A) := \limsup_{n\to\infty} \frac{|A \cap [-n, n]|}{|[-n, n]|}$.
- Think of \overline{d} as a finitely subadditive invariant probability measure on Γ.

▶
Recurrence in countable groups

One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

Theorem (Szemerédi)

*Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions. In other words, $\forall k \geq 1 \exists n \in \mathbb{N}$

$$A \cap (A - n) \cap (A - 2n) \cap ... \cap (A - kn) \neq \emptyset.$$*

- Here $\Gamma := \mathbb{Z}$ and upper density is $\overline{d}(A) := \limsup_{n \to \infty} \frac{|A \cap [-n, n]|}{|[-n, n]|}$.
- Think of \overline{d} as a finitely subadditive invariant probability measure on Γ.
- The object of study here is the measure-preserving action $\Gamma \curvearrowright (\Gamma, \overline{d})$ by right translation.
Recurrence in countable groups

One of the main themes in arithmetic combinatorics is proving multiple recurrence results for a given amenable group Γ. Such is the celebrated

Theorem (Szemerédi)

Any subset $A \subseteq \mathbb{Z}$ of positive upper density contains arbitrarily long arithmetic progressions. In other words, $\forall k \geq 1 \exists n \in \mathbb{N}$

$$A \cap (A - n) \cap (A - 2n) \cap \ldots \cap (A - kn) \neq \emptyset.$$

- Here $\Gamma := \mathbb{Z}$ and upper density is $\overline{d}(A) := \lim \sup_{n \to \infty} \frac{|A \cap [-n, n]|}{|[-n, n]|}$.
- Think of \overline{d} as a finitely subadditive invariant probability measure on Γ.
- The object of study here is the measure-preserving action $\Gamma \curvearrowright (\Gamma, \overline{d})$ by right translation.
- However, this dynamical system is hard to work with because of finite additivity.
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \acts (\Gamma, \overline{d})$ to a standard one $\Gamma \acts^\alpha (X, \nu)$, where
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \curvearrowright (\Gamma, \overline{d})$ to a standard one $\Gamma \curvearrowright \alpha (X, \nu)$, where

- (X, ν) is a genuine countably additive probability space;
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \curvearrowright (\Gamma, \bar{d})$ to a standard one $\Gamma \curvearrowright \alpha (X, \nu)$, where

- (X, ν) is a genuine \textit{countably additive} probability space;
- α is a measure-preserving action of Γ on (X, ν).
Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \curvearrowright^\rho (\Gamma, d)$ to a standard one $\Gamma \curvearrowright^\alpha (X, \nu)$, where

- (X, ν) is a genuine countably additive probability space;
- α is a measure-preserving action of Γ on (X, ν).

This works for any amenable group Γ and the correspondence is as follows:
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \curvearrowright^\rho (\Gamma, \bar{d})$ to a standard one $\Gamma \curvearrowright^\alpha (X, \nu)$, where

- (X, ν) is a genuine countably additive probability space;
- α is a measure-preserving action of Γ on (X, ν).

This works for any amenable group Γ and the correspondence is as follows:

- given $A \subseteq \Gamma$ with $\bar{d}(A) > 0$
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \acts (\Gamma, d)$ to a standard one $\Gamma \acts^\alpha (X, \nu)$, where

- (X, ν) is a genuine countably additive probability space;

- α is a measure-preserving action of Γ on (X, ν).

This works for any amenable group Γ and the correspondence is as follows:

- given $A \subseteq \Gamma$ with $d(A) > 0$

- there is a standard measure-preserving system $\Gamma \acts^\alpha (X_A, \nu_A)$ with $A' \subseteq X_A$
Furstenberg correspondence

Luckily, Furstenberg came up with a way of translating this funny dynamical system $\Gamma \curvearrowright (\Gamma, \overline{d})$ to a standard one $\Gamma \curvearrowright \alpha (X, \nu)$, where

- (X, ν) is a genuine countably additive probability space;
- α is a measure-preserving action of Γ on (X, ν).

This works for any amenable group Γ and the correspondence is as follows:

- given $A \subseteq \Gamma$ with $\overline{d}(A) > 0$

- there is a standard measure-preserving system $\Gamma \curvearrowright \alpha (X_A, \nu_A)$ with $A' \subseteq X_A$ such that for any $\gamma_1, \gamma_2, \ldots, \gamma_k \in \Gamma$,

$$
\overline{d}(A \cap A\gamma_1^{-1} \cap \ldots \cap A\gamma_k^{-1}) \geq \nu_A(A' \cap (\gamma_1^{-1} \cdot \alpha A') \cap \ldots \cap (\gamma_k^{-1} \cdot \alpha A')).
$$
Multiple Recurrence

Theorem (Furstenberg–Katznelson)

If Γ *is abelian, then for any (countably additive) dynamical system* $\Gamma \curvearrowright \alpha (X, \nu)$, *any* $B \subseteq X$ *with* $\nu(B) > 0$ *and any* $\gamma_1, \gamma_2, \ldots, \gamma_k \in \Gamma$, *there is* $n \in \mathbb{N}$,

$$\nu\left(B \cap (\gamma_1^{-n} \cdot \alpha B) \cap \ldots \cap (\gamma_k^{-n} \cdot \alpha B)\right) > 0.$$
Multiple Recurrence

Theorem (Furstenberg–Katznelson)

If Γ *is abelian*, then *for any (countably additive) dynamical system* $\Gamma \curvearrowright \alpha (X, \nu)$, *any* $B \subseteq X$ *with* $\nu(B) > 0$ *and any* $\gamma_1, \gamma_2, \ldots, \gamma_k \in \Gamma$, *there is* $n \in \mathbb{N}$,

$$\nu (B \cap (\gamma_1^{-n} \cdot \alpha B) \cap \ldots \cap (\gamma_k^{-n} \cdot \alpha B)) > 0.$$

Thus, for $\Gamma = \mathbb{Z} = \langle T \rangle$, *we take* $\gamma_i = T^i$ *and get*

$$\nu (B \cap T^{-n}(B) \cap \ldots \cap T^{-kn}(B)) > 0,$$

which implies Szemerédi’s theorem.
Alternative approach: changing the group

- In the Furstenberg correspondence, only the action space changes, from $\Gamma \acts (\Gamma, \bar{d})$ to $\Gamma \acts (X_A, \nu_A)$, while the acting group Γ stays the same.
Alternative approach: changing the group

- In the Furstenberg correspondence, only the action space changes, from $\Gamma \ltimes (\Gamma, \bar{d})$ to $\Gamma \ltimes (X_A, \nu_A)$, while the acting group Γ stays the same.

- Instead, taking the ultrapower $G := \Gamma^\mathbb{N}/_\alpha$ with the induced Loeb measure λ gives a different correspondence principle, where
Alternative approach: changing the group

- In the Furstenberg correspondence, only the action space changes, from $\Gamma \ltimes (\Gamma, \overline{d})$ to $\Gamma \ltimes (X_A, \nu_A)$, while the acting group Γ stays the same.

- Instead, taking the ultrapower $G := \Gamma^\mathbb{N} / =_\alpha$ with the induced Loeb measure λ gives a different correspondence principle, where
 - the acting group Γ itself changes to a more infinitary group G.

Alternative approach: changing the group

- In the Furstenberg correspondence, only the action space changes, from $\Gamma \curvearrowright (\Gamma, \overline{d})$ to $\Gamma \curvearrowright (X_A, \nu_A)$, while the acting group Γ stays the same.

- Instead, taking the ultrapower $G := \Gamma^\mathbb{N} / \equiv_\alpha$ with the induced Loeb measure λ gives a different correspondence principle, where
 - the acting group Γ itself changes to a more infinitary group G,
 - and the right translation action $\Gamma \curvearrowright (\Gamma, \overline{d})$ is naturally replaced by the right translation action $G \curvearrowright (G, \lambda)$.
Alternative approach: changing the group

In the Furstenberg correspondence, only the action space changes, from \(\Gamma \curvearrowright (\Gamma, \overline{d}) \) to \(\Gamma \curvearrowright (X_A, \nu_A) \), while the acting group \(\Gamma \) stays the same.

Instead, taking the ultrapower \(G := \Gamma^\mathbb{N} / \equiv_{\alpha} \) with the induced Loeb measure \(\lambda \) gives a different correspondence principle, where

- the acting group \(\Gamma \) itself changes to a more infinitary group \(G \),
- and the right translation action \(\Gamma \curvearrowright (\Gamma, \overline{d}) \) is naturally replaced by the right translation action \(G \curvearrowright (G, \lambda) \).

Thus, we obtain the following correspondence principle:
Alternative approach: changing the group

In the Furstenberg correspondence, only the action space changes, from $\Gamma \acts (\Gamma, \overline{d})$ to $\Gamma \acts (X_A, \nu_A)$, while the acting group Γ stays the same.

Instead, taking the ultrapower $G := \Gamma^\mathbb{N} / \! \! =\alpha$ with the induced Loeb measure λ gives a different correspondence principle, where

- the acting group Γ itself changes to a more infinitary group G,
- and the right translation action $\Gamma \acts (\Gamma, \overline{d})$ is naturally replaced by the right translation action $G \acts (G, \lambda)$.

Thus, we obtain the following correspondence principle:

- For any $A \subseteq \Gamma$ of positive upper density, taking the ultrapower $A' := A^\mathbb{N} / \! \! =\alpha \subseteq G$, we have
 $$\overline{d}(A) = \lambda(A');$$
Alternative approach: changing the group

In the Furstenberg correspondence, only the action space changes, from $\Gamma \ltimes (\Gamma, \overline{d})$ to $\Gamma \ltimes (X_A, \nu_A)$, while the acting group Γ stays the same.

Instead, taking the ultrapower $G := \Gamma^\mathbb{N} / \equiv_\alpha$ with the induced Loeb measure λ gives a different correspondence principle, where

- the acting group Γ itself changes to a more infinitary group G,
- and the right translation action $\Gamma \ltimes (\Gamma, \overline{d})$ is naturally replaced by the right translation action $G \ltimes (G, \lambda)$.

Thus, we obtain the following correspondence principle:

- For any $A \subseteq \Gamma$ of positive upper density, taking the ultrapower $A' := A^\mathbb{N} / \alpha \subseteq G$, we have
 \[\overline{d}(A) = \lambda(A'); \]
- moreover, viewing Γ inside G, we have that for any $\gamma_1, \gamma_2, \ldots, \gamma_k \in \Gamma$,
 \[\overline{d}(A \cap A\gamma_1^{-1} \cap \ldots \cap A\gamma_k^{-1}) \geq \lambda(A' \cap A'\gamma_1^{-1} \cap \ldots \cap A'\gamma_k^{-1}). \]
The class of probability groups
An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it includes all compact groups equipped with the Haar measure; is closed under taking ultraproducts. However, ultraproducts cause complications with the measurability of the group operation...

Even for finite groups G_n with their normalized counting measures μ_n, the multiplication is trivially measurable wrt the σ-algebra $B_n \times B_n$, where $B_n = \mathcal{P}(G_n)$.

Thus, if $(G, B, \mu) = \prod_{n \to \alpha} (G_n, B_n, \mu_n)$, then the multiplication operation in G is measurable wrt $B_2 = \prod_{n \to \alpha} B_n \times B_n$, but it may not be measurable with respect to $B \times B$.

An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
2. is closed under taking ultraproducts.

Even for finite groups G_n with their normalized counting measures μ_n, the multiplication is trivially measurable with respect to the σ-algebra $B_n \times B_n$, where $B_n = \mathcal{P}(G_n)$.

Thus, if $(G, B, \mu) = \prod_{\alpha} (G_n, B_n, \mu_n)$, then the multiplication operation in G is measurable with respect to $B^2 = \prod_{\alpha} B_n \times B_n$, but it may not be measurable with respect to $B \times B$.
An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
2. is closed under taking ultraproducts.

However, ultraproducts cause complications with the measurability of the group operation...
An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
2. is closed under taking ultraproducts.

However, ultraproducts cause complications with the measurability of the group operation...

- Even for finite groups G_n with their normalized counting measures μ_n, the multiplication is trivially measurable wrt the σ-algebra $\mathcal{B}_n \times \mathcal{B}_n$, where $\mathcal{B}_n = \mathcal{P}(G_n)$.
Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
2. is closed under taking ultraproducts.

However, ultraproducts cause complications with the measurability of the group operation...

- Even for finite groups G_n with their normalized counting measures μ_n, the multiplication is trivially measurable wrt the σ-algebra $\mathcal{B}_n \times \mathcal{B}_n$, where $\mathcal{B}_n = \mathcal{P}(G_n)$.

- Thus, if $(G, \mathcal{B}, \mu) = \prod_{n \rightarrow \alpha} (G_n, \mathcal{B}_n, \mu_n)$, then the multiplication operation in G is measurable wrt $\mathcal{B}_2 := \prod_{n \rightarrow \alpha} \mathcal{B}_n \times \mathcal{B}_n$.
An annoying complication

Our goal is to define a class of groups equipped with an invariant (countably additive) probability measure so that it

1. includes all compact groups equipped with the Haar measure;
2. is closed under taking ultraproducts.

However, ultraproducts cause complications with the measurability of the group operation...

- Even for finite groups G_n with their normalized counting measures μ_n, the multiplication is trivially measurable wrt the σ-algebra $\mathcal{B}_n \times \mathcal{B}_n$, where $\mathcal{B}_n = \mathcal{P}(G_n)$.

- Thus, if $(G, \mathcal{B}, \mu) = \prod_{n \to \alpha} (G_n, \mathcal{B}_n, \mu_n)$, then the multiplication operation in G is measurable wrt $\mathcal{B}_2 := \prod_{n \to \alpha} \mathcal{B}_n \times \mathcal{B}_n$.

- but it may not be measurable with respect to $\mathcal{B} \times \mathcal{B}$.
Probability groups

- Let G be a group (possibly very uncountable),
Let G be a group (possibly very uncountable),

$(\mathcal{B}(n))_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}(n)$ on G^n, so that

$\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k), \text{ for all } k < n,$

$(\mu(n))_{n \geq 1}$ be a sequence of probability measures, $\mu(n)$ on $\mathcal{B}(n)$, so that

$\mu(n) \Downarrow \mathcal{B}(k) \times \mathcal{B}(n-k) = \mu(k) \times \mu(n-k), \text{ for all } k < n.$

We call the tuple $(G, (\mathcal{B}(n))_{n \geq 1}, (\mu(n))_{n \geq 1})$ a probability group if

1. The multiplication operation $\cdot : (G^2, \mathcal{B}(2)) \to (G, \mathcal{B})$ is measurable; in fact, all the word-multiplication maps $(G^n, \mathcal{B}(n)) \to (G^k, \mathcal{B}(k))$ are measurable.

Example: for fixed $h_1, h_2 \in G$, the map $(g_1, g_2, g_3) \mapsto (g_2 h_1 g_1, g_3 g_1, h_2, g_1)$.

2. The inverse operation $(G, \mathcal{B}) \to (G, \mathcal{B})$ is measurable;

3. Every $\mu(n)$ is a symmetric two-sided invariant measure;

4. For any $f \in L^1(G^n, \mathcal{B}(n), \mu(n))$, Fubini's theorem holds.
Let G be a group (possibly very uncountable),

$(\mathcal{B}(n))_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}(n)$ on G^n, so that

$\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k)$, for all $k < n$,

$(\mu(n))_{n \geq 1}$ be a sequence of probability measures, $\mu(n)$ on $\mathcal{B}(n)$, so that

$\mu(n) \downarrow_{\mathcal{B}(k) \times \mathcal{B}(n-k)} = \mu(k) \times \mu(n-k)$, for all $k < n$.

Probability groups

Let G be a group (possibly very uncountable),

$(\mathcal{B}(n))_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}(n)$ on G^n, so that $\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k)$, for all $k < n$,

$(\mu^{(n)})_{n \geq 1}$ be a sequence of probability measures, $\mu^{(n)}$ on $\mathcal{B}(n)$, so that $\mu^{(n)}|_{\mathcal{B}(k) \times \mathcal{B}(n-k)} = \mu^{(k)} \times \mu^{(n-k)}$, for all $k < n$.

We call the tuple $(G, (\mathcal{B}(n))_{n \geq 1}, (\mu^{(n)})_{n \geq 1})$ a probability group if
Probability groups

- Let G be a group (possibly very uncountable),
- $(\mathcal{B}(n))_{n\geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}(n)$ on G^n, so that
 $$\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k), \text{ for all } k < n,$$
- $(\mu(n))_{n\geq 1}$ be a sequence of probability measures, $\mu(n)$ on $\mathcal{B}(n)$, so that
 $$\mu(n)|_{\mathcal{B}(k) \times \mathcal{B}(n-k)} = \mu(k) \times \mu(n-k), \text{ for all } k < n.$$

We call the tuple $(G, (\mathcal{B}(n))_{n\geq 1}, (\mu(n))_{n\geq 1})$ a **probability group** if

1. The multiplication operation $\cdot : (G^2, \mathcal{B}(2)) \to (G, \mathcal{B})$ is measurable;
Let G be a group (possibly very uncountable),

$(\mathcal{B}^{(n)})_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}^{(n)}$ on G^n, so that $\mathcal{B}^{(n)} \supseteq \mathcal{B}^{(k)} \times \mathcal{B}^{(n-k)}$, for all $k < n$,

$(\mu^{(n)})_{n \geq 1}$ be a sequence of probability measures, $\mu^{(n)}$ on $\mathcal{B}^{(n)}$, so that $\mu^{(n)}\upharpoonright \mathcal{B}^{(k)} \times \mathcal{B}^{(n-k)} = \mu^{(k)} \times \mu^{(n-k)}$, for all $k < n$.

We call the tuple $(G, (\mathcal{B}^{(n)})_{n \geq 1}, (\mu^{(n)})_{n \geq 1})$ a **probability group** if

1. The multiplication operation $\cdot : (G^2, \mathcal{B}^{(2)}) \to (G, \mathcal{B})$ is measurable; in fact, all the word-multiplication maps $(G^n, \mathcal{B}^{(n)}) \to (G^k, \mathcal{B}^{(k)})$ are measurable.
Probability groups

- Let G be a group (possibly very uncountable),
- $(B^{(n)})_{n \geq 1}$ be a sequence of symmetric σ-algebras, $B^{(n)}$ on G^n, so that $B^{(n)} \supseteq B^{(k)} \times B^{(n-k)}$, for all $k < n$,
- $(\mu^{(n)})_{n \geq 1}$ be a sequence of probability measures, $\mu^{(n)}$ on $B^{(n)}$, so that $\mu^{(n)} |_{B^{(k)} \times B^{(n-k)}} = \mu^{(k)} \times \mu^{(n-k)}$, for all $k < n$.

We call the tuple $\left(G, (B^{(n)})_{n \geq 1}, (\mu^{(n)})_{n \geq 1} \right)$ a probability group if

1. The multiplication operation $\cdot : (G^2, B^{(2)}) \rightarrow (G, B)$ is measurable; in fact, all the word-multiplication maps $(G^n, B^{(n)}) \rightarrow (G^k, B^{(k)})$ are measurable. Example: for fixed $h_1, h_2 \in G$, the map

 $$(g_1, g_2, g_3) \mapsto (g_2 h_1 g_1 g_3, g_3 g_1, h_2, g_1).$$
Let G be a group (possibly very uncountable),

$(\mathcal{B}(n))_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}(n)$ on G^n, so that

$$\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k), \text{ for all } k < n,$$

$(\mu(n))_{n \geq 1}$ be a sequence of probability measures, $\mu(n)$ on $\mathcal{B}(n)$, so that

$$\mu(n) \downarrow_{\mathcal{B}(k) \times \mathcal{B}(n-k)} = \mu(k) \times \mu(n-k), \text{ for all } k < n.$$

We call the tuple $(G, (\mathcal{B}(n))_{n \geq 1}, (\mu(n))_{n \geq 1})$ a **probability group** if

1. The multiplication operation $\cdot : (G^2, \mathcal{B}(2)) \rightarrow (G, \mathcal{B})$ is measurable; in fact, all the word-multiplication maps $(G^n, \mathcal{B}(n)) \rightarrow (G^k, \mathcal{B}(k))$ are measurable. Example: for fixed $h_1, h_2 \in G$, the map

$$(g_1, g_2, g_3) \mapsto (g_2 h_1 g_1 g_3, g_3 g_1, h_2, g_1).$$

2. The inverse operation $()^{-1} : (G, \mathcal{B}) \rightarrow (G, \mathcal{B})$ is measurable;
Probability groups

- Let G be a group (possibly very uncountable),
- $(\mathcal{B}^{(n)})_{n \geq 1}$ be a sequence of symmetric σ-algebras, $\mathcal{B}^{(n)}$ on G^n, so that
 $\mathcal{B}^{(n)} \supseteq \mathcal{B}^{(k)} \times \mathcal{B}^{(n-k)}$, for all $k < n$,
- $(\mu^{(n)})_{n \geq 1}$ be a sequence of probability measures, $\mu^{(n)}$ on $\mathcal{B}^{(n)}$, so that
 $\mu^{(n)}|_{\mathcal{B}^{(k)} \times \mathcal{B}^{(n-k)}} = \mu^{(k)} \times \mu^{(n-k)}$, for all $k < n$.

We call the tuple $(G, (\mathcal{B}^{(n)})_{n \geq 1}, (\mu^{(n)})_{n \geq 1})$ a probability group if

1. The multiplication operation $\cdot : (G^2, \mathcal{B}^{(2)}) \to (G, \mathcal{B})$ is measurable; in fact, all the word-multiplication maps $(G^n, \mathcal{B}^{(n)}) \to (G^k, \mathcal{B}^{(k)})$ are measurable. Example: for fixed $h_1, h_2 \in G$, the map
 $$(g_1, g_2, g_3) \mapsto (g_2 h_1 g_1 g_3, g_3 g_1, h_2, g_1).$$
2. The inverse operation $(\cdot)^{-1} : (G, \mathcal{B}) \to (G, \mathcal{B})$ is measurable;
3. Every $\mu^{(n)}$ is a symmetric two-sided invariant measure.
Probability groups

- Let \(G \) be a group (possibly very uncountable),
- \((\mathcal{B}(n))_{n \geq 1} \) be a sequence of symmetric \(\sigma \)-algebras, \(\mathcal{B}(n) \) on \(G^n \), so that
 \[\mathcal{B}(n) \supseteq \mathcal{B}(k) \times \mathcal{B}(n-k), \text{ for all } k < n, \]
- \((\mu(n))_{n \geq 1} \) be a sequence of probability measures, \(\mu(n) \) on \(\mathcal{B}(n) \), so that
 \[\mu(n) \downarrow_{\mathcal{B}(k) \times \mathcal{B}(n-k)} = \mu(k) \times \mu(n-k), \text{ for all } k < n. \]

We call the tuple \((G, (\mathcal{B}(n))_{n \geq 1}, (\mu(n))_{n \geq 1}) \) a **probability group** if

1. The multiplication operation \(\cdot : (G^2, \mathcal{B}(2)) \to (G, \mathcal{B}) \) is measurable; in fact, all the word-multiplication maps \((G^n, \mathcal{B}(n)) \to (G^k, \mathcal{B}(k)) \) are measurable. Example: for fixed \(h_1, h_2 \in G \), the map
 \[(g_1, g_2, g_3) \mapsto (g_2 h_1 g_1 g_3, g_3 g_1, h_2, g_1). \]
2. The inverse operation \(()^{-1} : (G, \mathcal{B}) \to (G, \mathcal{B}) \) is measurable;
3. Every \(\mu(n) \) is a symmetric two-sided invariant measure;
4. For any \(f \in L^1(G^n, \mathcal{B}(n), \mu(n)) \), Fubini’s theorem holds.
Examples of probability groups

- Compact Hausdorff groups are probability groups.
Examples of probability groups

- Compact Hausdorff groups are probability groups.
- The class of probability groups is closed under ultraproducts.
Examples of probability groups

▶ Compact Hausdorff groups are probability groups.
▶ The class of probability groups is closed under ultraproducts.
▶ Ultraproducts of amenable groups are probability group.
Double recurrence in quasirandom groups
We define a measure-preserving action $a : G \curvearrowright (X, \nu)$ of a probability group (G, μ) on a probability space (X, ν) in a natural way:
We define a measure-preserving action $a : G \curvearrowright (X, \nu)$ of a probability group (G, μ) on a probability space (X, ν) in a natural way:

1. each element $g \in G$ acts on (X, ν) as a measure-preserving automorphism,
We define a **measure-preserving action** $a : G \curvearrowright (X, \nu)$ of a probability group (G, μ) on a probability space (X, ν) in a natural way:

1. each element $g \in G$ acts on (X, ν) as a measure-preserving automorphism,

2. the action $a : G \times X \rightarrow X$ satisfies a certain **joint measurability** condition that enables the use of Fubini’s theorem.

Examples

- The left and right translation actions $G \curvearrowright \ell^2(G, \mu)$ and $G \curvearrowright r^2(G, \mu)$.
- The conjugation action $G \curvearrowright c^2(G, \mu)$.

▶ Any measure-preserving action $a : G \curvearrowright (X, \nu)$ lifts to a unitary action $G \curvearrowright L^2(X, \nu)$ by $g \cdot a f(x) := f(g^{-1} \cdot a x)$.

▶ For $f \in L^2(X, \nu)$, let $P_a(f)$ denote the orthogonal projection of f onto the subspace $L^2_{a}(X, \nu)$ of invariant functions.
Measure-preserving actions of probability groups

We define a **measure-preserving action** \(a : G \curvearrowright (X, \nu) \) of a probability group \((G, \mu)\) on a probability space \((X, \nu)\) in a natural way:

1. each element \(g \in G \) acts on \((X, \nu)\) as a measure-preserving automorphism,
2. the action \(a : G \times X \to X \) satisfies a certain joint measurability condition that enables the use of Fubini’s theorem.

Examples

- The left and right translation actions \(G \curvearrowleft \ell (G, \mu) \) and \(G \curvearrowright r (G, \mu) \).
Measure-preserving actions of probability groups

We define a **measure-preserving action** $a : G \curvearrowright (X, \nu)$ of a probability group (G, μ) on a probability space (X, ν) in a natural way:

1. each element $g \in G$ acts on (X, ν) as a measure-preserving automorphism,
2. the action $a : G \times X \to X$ satisfies a certain joint measurability condition that enables the use of Fubini’s theorem.

Examples

- The left and right **translation actions** $G \curvearrowleft (G, \mu)$ and $G \curvearrowright (G, \mu)$.
- The **conjugation action** $G \curvearrowleft^c (G, \mu)$.
We define a **measure-preserving action** $a : G \curvearrowright (X, \nu)$ of a probability group (G, μ) on a probability space (X, ν) in a natural way:

1. each element $g \in G$ acts on (X, ν) as a measure-preserving automorphism,

2. the action $a : G \times X \to X$ satisfies a certain joint measurability condition that enables the use of Fubini’s theorem.

Examples

- The left and right translation actions $G \curvearrowleft^\ell (G, \mu)$ and $G \curvearrowleft^r (G, \mu)$.
- The conjugation action $G \curvearrowright^c (G, \mu)$.

Any measure-preserving action $a : G \curvearrowright (X, \nu)$ lifts to a **unitary action** $G \curvearrowleft^a L^2(X, \nu)$ by

$$g \cdot_a f(x) := f(g^{-1} \cdot_a x).$$
We define a measure-preserving action \(a : G \curvearrowright (X, \nu) \) of a probability group \((G, \mu)\) on a probability space \((X, \nu)\) in a natural way:

1. each element \(g \in G \) acts on \((X, \nu)\) as a measure-preserving automorphism,
2. the action \(a : G \times X \to X \) satisfies a certain joint measurability condition that enables the use of Fubini’s theorem.

Examples

- The left and right translation actions \(G \curvearrowright^\ell (G, \mu) \) and \(G \curvearrowright^r (G, \mu) \).
- The conjugation action \(G \curvearrowright^c (G, \mu) \).

Any measure-preserving action \(a : G \curvearrowright (X, \nu) \) lifts to a unitary action \(G \curvearrowright^a L^2(X, \nu) \) by

\[
g \cdot_a f(x) := f(g^{-1} \cdot_a x).
\]

For \(f \in L^2(X, \nu) \), let \(P_a(f) \) denote the orthogonal projection of \(f \) onto the subspace \(L^2_a(X, \nu) \) of invariant functions.
We now recall the notion of weak mixing for \(\mathbb{Z} \), but it is similarly defined for any countable amenable group.
We now recall the notion of weak mixing for \(\mathbb{Z} \), but it is similarly defined for any countable amenable group.

A measure-preserving ergodic action \(\mathbb{Z} \curvearrowright (X, \nu) \) via \(T : X \to X \) is called weakly mixing if for any \(A, B \subseteq X \), we have

\[
\lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} |\nu(A \cap T^{-k}(B)) - \nu(A)\nu(B)| = 0.
\]
Overview of mixing actions of countable amenable groups

- We now recall the notion of weak mixing for \mathbb{Z}, but it is similarly defined for any countable amenable group.

- A measure-preserving ergodic action $\mathbb{Z} \curvearrowright (X, \nu)$ via $T : X \to X$ is called **weakly mixing** if for any $A, B \subseteq X$, we have

$$
\lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} |\nu(A \cap T^{-k}(B)) - \nu(A)\nu(B)| = 0.
$$

- Equivalently, A, B can be replaced with any $f_0, f_1 \in L^2(X, \nu)$:

$$
\lim_{n \to \infty} \frac{1}{|[-n, n]|} \sum_{k=-n}^{n} \left| \int_X f_0(T^k f_1) - \int_X f_0 \int_X f_1 \right| = 0.
$$
Overview of mixing actions of countable amenable groups

- We now recall the notion of weak mixing for \mathbb{Z}, but it is similarly defined for any countable amenable group.

- A measure-preserving ergodic action $\mathbb{Z} \curvearrowright (X, \nu)$ via $T : X \to X$ is called **weakly mixing** if for any $A, B \subseteq X$, we have

$$\lim_{n \to \infty} \frac{1}{[−n, n]} \sum_{k=−n}^{n} |\nu(A \cap T^{-k}(B)) − \nu(A)\nu(B)| = 0.$$

- Equivalently, A, B can be replaced with any $f_0, f_1 \in L^2(X, \nu)$:

$$\lim_{n \to \infty} \frac{1}{[−n, n]} \sum_{k=−n}^{n} \left| \int_X f_0(T^k f_1) - \int_X f_0 \int_X f_1 \right| = 0.$$

- More generally, without the ergodicity assumption, a measure-preserving action $\mathbb{Z} \curvearrowright (X, \nu)$ is called **weakly mixing** if for any $f_0, f_1 \in L^2(X, \nu)$:

$$\lim_{n \to \infty} \frac{1}{[−n, n]} \sum_{k=−n}^{n} |\langle f_0, T^k f_1 \rangle - \langle f_0, P_a(f_1) \rangle| = 0.$$
A measure-preserving action \(a : G \curvearrowright X \) of a probability group \((G, \mu) \) on a probability space \((X, \nu) \) is called **mixing along** \(\mu \) (or just **mixing**) if for any \(f_1, f_2 \in L^2(X, \nu) \), we have:

\[
\int_{G} |\langle f_0, g \cdot a f_1 \rangle - \langle f_0, P_a(f_1) \rangle| = 0.
\]
Mixing actions of probability groups

A measure-preserving action \(a : G \htimes X \) of a probability group \((G, \mu)\) on a probability space \((X, \nu)\) is called **mixing along** \(\mu \) (or just **mixing**) if for any \(f_1, f_2 \in L^2(X, \nu) \), we have:

\[
\int_G |\langle f_0, g \cdot_a f_1 \rangle - \langle f_0, P_a(f_1) \rangle| = 0.
\]

But the latter is equivalent to:

\[
\text{for } \mu\text{-a.e. } g \in G \quad |\langle f_0, g \cdot_a f_1 \rangle - \langle f_0, P_a(f_1) \rangle| = 0.
\]

Call a probability group \(G \) mixing if all of its measure-preserving actions are mixing.
A measure-preserving action $a : G \curvearrowright X$ of a probability group (G, μ) on a probability space (X, ν) is called **mixing along μ** (or just **mixing**) if for any $f_1, f_2 \in L^2(X, \nu)$, we have:

$$
\int_G \left| \langle f_0, g \cdot_a f_1 \rangle - \langle f_0, P_a(f_1) \rangle \right| = 0.
$$

But the latter is equivalent to:

$$
\text{for } \mu\text{-a.e. } g \in G \quad \forall \mu g \in G \quad \left| \langle f_0, g \cdot_a f_1 \rangle - \langle f_0, P_a(f_1) \rangle \right| = 0.
$$

Call a probability group G **mixing** if all of its measure-preserving actions are mixing.
Our goal now is to build a mixing probability group and we do this using approximately mixing groups such as:

Definition (Gowers)

For fixed $D \in \mathbb{N}$, a finite group G is called D-quasirandom if it doesn’t have any nontrivial unitary representations of dimension less than D.

Examples

(Gowers) The alternating group A_n is $(n - 1)$-quasirandom.

(Gowers) More generally, if G is perfect (i.e. $[G, G] = G$) and has no normal subgroups of index less than m, then G is $\sqrt{\log m}/2$-quasirandom.

(Frobenius) $\text{SL}_2(F_p)$ is $p^{1/2}$-quasirandom.
Quasirandom groups

Our goal now is to build a mixing probability group and we do this using approximately mixing groups such as:

Definition (Gowers)

For fixed $D \in \mathbb{N}$, a finite group G is called D-quasirandom if it doesn’t have any nontrivial unitary representations of dimension less than D.

Examples (Gowers)

- The alternating group A_n is $(n-1)$-quasirandom.
- More generally, if G is perfect (i.e. $[G,G] = G$) and has no normal subgroups of index less than m, then G is $\sqrt{\log m / 2}$-quasirandom.

(Frobenius)

$\text{SL}_2(\mathbb{F}_p)$ is $p - 1/2$-quasirandom.
Quasirandom groups

Our goal now is to build a mixing probability group and we do this using approximately mixing groups such as:

Definition (Gowers)
For fixed $D \in \mathbb{N}$, a finite group G is called D-quasirandom if it doesn’t have any nontrivial unitary representations of dimension less than D.

Examples
- (Gowers) The alternating group A_n is $(n - 1)$-quasirandom.
Quasirandom groups

Our goal now is to build a mixing probability group and we do this using approximately mixing groups such as:

Definition (Gowers)

For fixed $D \in \mathbb{N}$, a finite group G is called D-quasirandom if it doesn’t have any nontrivial unitary representations of dimension less than D.

Examples

- (Gowers) The alternating group A_n is $(n - 1)$-quasirandom.
- (Gowers) More generally, if G is perfect (i.e. $[G, G] = G$) and has no normal subgroups of index less than m, then G is $\sqrt{\log m}/2$-quasirandom.
Quasirandom groups

Our goal now is to build a mixing probability group and we do this using approximately mixing groups such as:

Definition (Gowers)
For fixed $D \in \mathbb{N}$, a finite group G is called D-quasirandom if it doesn’t have any nontrivial unitary representations of dimension less than D.

Examples
- (Gowers) The alternating group A_n is $(n - 1)$-quasirandom.
- (Gowers) More generally, if G is perfect (i.e. $[G, G] = G$) and has no normal subgroups of index less than m, then G is $\sqrt{\log m}/2$-quasirandom.
- (Frobenius) $SL_2(F_p)$ is $\frac{p-1}{2}$-quasirandom.
A measure-preserving action \(G \ltimes (X, \nu) \) of a probability group \((G, \mu)\) (not necessarily finite) is called \(\varepsilon \)-mixing if for any \(f_1, f_2 \in L^2(X, \nu) \),

\[
\int_G |\langle f_1, g \cdot a f_2 \rangle - \langle P_a(f_1), P_a(f_2) \rangle| \leq \varepsilon \| f_1 \|_{L^2} \| f_2 \|_{L^2}.
\]
A measure-preserving action $G \curvearrowright (X, \nu)$ of a probability group (G, μ) (not necessarily finite) is called ε-mixing if for any $f_1, f_2 \in L^2(X, \nu)$,

$$\int_G \left| \langle f_1, g \cdot a f_2 \rangle - \langle P_a(f_1), P_a(f_2) \rangle \right| \leq \varepsilon \|f_1\|_{L^2} \|f_2\|_{L^2}.$$

As before, call the probability group G itself ε-mixing if so are all of its measure-preserving actions.
A measure-preserving action $G \curvearrowright (X, \nu)$ of a probability group (G, μ) (not necessarily finite) is called ε-mixing if for any $f_1, f_2 \in L^2(X, \nu)$,

$$\int_G |\langle f_1, g \cdot a f_2 \rangle - \langle P_a(f_1), P_a(f_2) \rangle| \leq \varepsilon \|f_1\|_{L^2} \|f_2\|_{L^2}.$$

As before, call the probability group G itself ε-mixing if so are all of its measure-preserving actions.

(Bergelson–Tao; Gowers) D-quasirandom groups are $D^{-1/2}$-mixing.
Quasirandom \Rightarrow approximately mixing

- A measure-preserving action $G \curvearrowright (X, \nu)$ of a probability group (G, μ) (not necessarily finite) is called ε-mixing if for any $f_1, f_2 \in L^2(X, \nu)$,

$$\int_G |\langle f_1, g \cdot a f_2 \rangle - \langle P_a(f_1), P_a(f_2) \rangle| \leq \varepsilon \|f_1\|_{L^2} \|f_2\|_{L^2}.$$

- As before, call the probability group G itself ε-mixing if so are all of its measure-preserving actions.

- (Bergelson–Tao; Gowers) D-quasirandom groups are $D^{-1/2}$-mixing.

Definition

An ultra quasirandom group G is an ultraproduct $G = \prod_{n \to \alpha} G_n$ of D_n-quasirandom groups G_n such that $D_n \to \infty$ as $n \to \infty$.
A measure-preserving action $G \actson (X, \nu)$ of a probability group (G, μ) (not necessarily finite) is called ε-mixing if for any $f_1, f_2 \in L^2(X, \nu)$,

$$\int_G |\langle f_1, g \cdot a f_2 \rangle - \langle P_a(f_1), P_a(f_2) \rangle| \leq \varepsilon \|f_1\|_{L^2} \|f_2\|_{L^2}.$$

As before, call the probability group G itself ε-mixing if so are all of its measure-preserving actions.

(Bergelson–Tao; Gowers) D-quasirandom groups are $D^{-1/2}$-mixing.

Definition

An **ultra quasirandom** group G is an ultraproduct $G = \prod_{n \to \alpha} G_n$ of D_n-quasirandom groups G_n such that $D_n \to \infty$ as $n \to \infty$.

The ultraproduct washes the error away, so

Proposition

Ultra quasirandom groups are mixing probability groups.
Double recurrence in quasirandom groups

Theorem (Bergelson–Tao)

Let \((G, \mu)\) be an ultra quasirandom group and consider the left translation \(G \acts^\ell (G, \mu)\) and conjugation \(G \acts^c (G, \mu)\) actions. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[\forall \mu g \in G \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3). \]
Theorem (Bergelson–Tao)

Let \((G, \mu)\) be an ultra quasirandom group and consider the left translation \(G \curvearrowleft^\ell (G, \mu)\) and conjugation \(G \curvearrowright^c (G, \mu)\) actions. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_{\ell}(f_2) P_c(f_3).
\]

By the definition of Loeb measure, we get:
Double recurrence in quasirandom groups

Theorem (Bergelson–Tao)

Let \((G, \mu)\) be an ultra quasirandom group and consider the left translation \(G \overset{\ell}{\curvearrowright} (G, \mu)\) and conjugation \(G \overset{c}{\curvearrowright} (G, \mu)\) actions. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).
\]

By the definition of Loeb measure, we get:

Theorem (Bergelson–Tao)

Let \((G, \mu)\) be a \(D\)-quasirandom group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\int_G \left| \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) d\mu - \int_G f_1 P_\ell(f_2) P_c(f_3) d\mu \right| d\mu \leq \rho(D),
\]

where \(\rho(D)\) depends only on \(D\) and \(\rho(D) \to 0\) as \(D \to \infty\).
Double recurrence in quasirandom groups with explicit error

Theorem (Bergelson–Tao)

Let \((G, \mu)\) be a \(D\)-quasirandom group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\left| \int_G \left(\int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) \, d\mu \right) - \int_G f_1 P_\ell(f_2) P_c(f_3) \, d\mu \right| \, d\mu \leq \rho(D),
\]

where \(\rho(D)\) depends only on \(D\) and \(\rho(D) \to 0\) as \(D \to \infty\).
Let \((G, \mu)\) be a \(D\)-quasirandom group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\left| \int_G \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) d\mu - \int_G f_1 P_\ell(f_2) P_c(f_3) d\mu \right| d\mu \leq \rho(D),
\]

where \(\rho(D)\) depends only on \(D\) and \(\rho(D) \to 0\) as \(D \to \infty\).

Shortly after the latter result was posted, Tim Austin proved it with an explicit error \(\rho(D) = 4D^{-1/8}\), and his proof was significantly shorter than that of Bergelson–Tao.
Double recurrence in mixing probability groups

Our abstract measure theoretic approach (different from Bergelson–Tao and Austin) gives the following more general results:

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P\ell(f_2) Pc(f_3).
\]

Using the same proof, but keeping track of the epsilons, we get:

Theorem (Ts.)

Let \((G, \mu)\) be an \(\varepsilon\)-mixing probability group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\left| \int_G \left| \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) - \int_G f_1 P\ell(f_2) Pc(f_3) \right| d\mu(g) \right| \leq 4 \sqrt{\varepsilon}.
\]

Since \(D\)-quasirandom groups are \(\varepsilon = D^{-1}/2\)-mixing, we get double recurrence for them with error \(4D^{-1}/4\), which is a slight improvement over Austin's \(4D^{-1}/8\).
Double recurrence in mixing probability groups

Our abstract measure theoretic approach (different from Bergelson–Tao and Austin) gives the following more general results:

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P\ell(f_2) P_c(f_3).
\]
Double recurrence in mixing probability groups

Our abstract measure theoretic approach (different from Bergelson–Tao and Austin) gives the following more general results:

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P\ell(f_2) P_c(f_3).
\]

Using the same proof, but keeping track of the \textit{epsilon}s, we get:
Double recurrence in mixing probability groups

Our abstract measure theoretic approach (different from Bergelson–Tao and Austin) gives the following more general results:

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G, \quad \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 \mathcal{P}_\ell(f_2) \mathcal{P}_c(f_3).
\]

Using the same proof, but keeping track of the \(\epsilon\)s, we get:

Theorem (Ts.)

Let \((G, \mu)\) be an \(\epsilon\)-mixing probability group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\int_G \left| \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) - \int_G f_1 \mathcal{P}_\ell(f_2) \mathcal{P}_c(f_3) \right| d\mu(g) \leq 4\sqrt{\epsilon}.
\]
Double recurrence in mixing probability groups

Our abstract measure theoretic approach (different from Bergelson–Tao and Austin) gives the following more general results:

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu \ g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).
\]

Using the same proof, but keeping track of the epsilons, we get:

Theorem (Ts.)

Let \((G, \mu)\) be an \(\varepsilon\)-mixing probability group. For any \(f_1, f_2, f_3 \in L^2(G, \mu)\) with \(\|f_1\|_{L^\infty}, \|f_2\|_{L^\infty}, \|f_3\|_{L^\infty} \leq 1\),

\[
\int_G \left| \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) - \int_G f_1 P_\ell(f_2) P_c(f_3) \right| d\mu(g) \leq 4\sqrt{\varepsilon}.
\]

Since \(D\)-quasirandom groups are \(\varepsilon = D^{-1/2}\)-mixing, we get double recurrence for them with error \(4D^{-1/4}\), which is a slight improvement over Austin’s \(4D^{-1/8}\).
THANK YOU
Proof of “mixing \implies double recurrence”

Theorem (Ts.)

Let (G, μ) be a *mixing probability group*. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$, $
\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$

Reduction:
Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is $(\forall \mu g \in G) \int_G (f_1 f_3)(g \cdot \ell f_2) d\mu = \int_G (f_1 f_3) P_\ell(f_2) d\mu$, but this follows from mixing of the left translation action.

Case 2: $P_c(f_3) = 0$. In this case, the above equality becomes: $(\forall \mu g \in G) \langle f_1, e_g \rangle = \int_X f_1(g \cdot \ell f_2)(g \cdot c f_3) = 0$, letting $e_g := (g \cdot \ell f_2)(g \cdot c f_3)$.

Proof of “mixing \implies double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:
Proof of “mixing \Rightarrow double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant.
Proof of “mixing \implies double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is

$$(\forall \mu g \in G) \int_G (f_1 f_3)(g \cdot \ell f_2) d\mu = \int_G (f_1 f_3) P_\ell(f_2) d\mu,$$
Proof of “mixing \Rightarrow double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2)P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is

$$(\forall \mu g \in G) \int_G (f_1 f_3)(g \cdot \ell f_2) d\mu = \int_G (f_1 f_3)P_\ell(f_2) d\mu,$$

but this follows from mixing of the left translation action.
Proof of “mixing \Rightarrow double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^{\infty}(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is

$$\forall \mu g \in G, \int_G (f_1 f_3)(g \cdot f_2) d\mu = \int_G f_1 P_\ell(f_2) d\mu,$$

but this follows from mixing of the left translation action.

Case 2: $P_c(f_3) = 0$.

Proof of “mixing \iff double recurrence”

Theorem (Ts.)

Let \((G, \mu)\) be a mixing probability group. For any \(f_1, f_2, f_3 \in L^\infty(G, \mu)\),

\[
\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).
\]

Reduction: Writing \(f_3 = (f_3 - P_c(f_3)) + P_c(f_3)\) reduces to the following two orthogonal cases:

Case 1: \(P_c(f_3) = f_3\), i.e. \(f_3\) is already conjugation-invariant. In this case, what we need to prove is

\[
(\forall \mu g \in G) \int_G (f_1 f_3)(g \cdot \ell f_2) d\mu = \int_G (f_1 f_3) P_\ell(f_2) d\mu,
\]

but this follows from mixing of the left translation action.

Case 2: \(P_c(f_3) = 0\). In this case, the above equality becomes:

\[
(\forall \mu g \in G) \int_X f_1(g \cdot \ell f_2)(g \cdot c f_3) = 0,
\]
Proof of “mixing \implies double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot \ell f_2)(g \cdot c f_3) = \int_G f_1 \ell f_2 P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is

$$(\forall \mu g \in G) \int_G (f_1 f_3)(g \cdot \ell f_2)d\mu = \int_G (f_1 f_3) \ell f_2 d\mu,$$

but this follows from mixing of the left translation action.

Case 2: $P_c(f_3) = 0$. In this case, the above equality becomes: $$(\forall \mu g \in G) \int_X f_1(g \cdot \ell f_2)(g \cdot c f_3) = 0,$$

letting $e_g := (g \cdot \ell f_2)(g \cdot c f_3)$.
Proof of “mixing \implies double recurrence”

Theorem (Ts.)

Let (G, μ) be a mixing probability group. For any $f_1, f_2, f_3 \in L^\infty(G, \mu)$,

$$\forall \mu g \in G, \int_G f_1(g \cdot_\ell f_2)(g \cdot_c f_3) = \int_G f_1 P_\ell(f_2) P_c(f_3).$$

Reduction: Writing $f_3 = (f_3 - P_c(f_3)) + P_c(f_3)$ reduces to the following two orthogonal cases:

Case 1: $P_c(f_3) = f_3$, i.e. f_3 is already conjugation-invariant. In this case, what we need to prove is

$$\forall \mu g \in G \int_G (f_1 f_3)(g \cdot_\ell f_2) d\mu = \int_G (f_1 f_3) P_\ell(f_2) d\mu,$$

but this follows from mixing of the left translation action.

Case 2: $P_c(f_3) = 0$. In this case, the above equality becomes: $\forall \mu g \in G$

$$\langle f_1, e_g \rangle = \int_X f_1(g \cdot_\ell f_2)(g \cdot_c f_3) = 0,$$

letting $e_g := (g \cdot_\ell f_2)(g \cdot_c f_3)$.

The van der Corput trick

So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(\mathcal{H} = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu g) \langle f, e_g \rangle = 0\), for every \(f \in \mathcal{H}\).
The van der Corput trick

So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(\mathcal{H} = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu g) \langle f, e_g \rangle = 0\), for every \(f \in \mathcal{H}\).

Bessel's inequality implies:

Baby van der Corput

Let \((e_n)_{n \in \mathbb{N}}\) be a bounded orthogonal family in a Hilbert space \(\mathcal{H}\),
The van der Corput trick

So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(\mathcal{H} = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu g) \langle f, e_g \rangle = 0\), for every \(f \in \mathcal{H}\).

Bessel’s inequality implies:

Baby van der Corput

Let \((e_n)_{n \in \mathbb{N}}\) be a bounded *orthogonal family* in a Hilbert space \(\mathcal{H}\), i.e.
\[
\forall m \neq 0 \ \forall n \langle e_n, e_{n+m} \rangle = 0.
\]
So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(\mathcal{H} = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu) \langle f, e_g \rangle = 0\), for every \(f \in \mathcal{H}\).

Bessel’s inequality implies:

Baby van der Corput

Let \((e_n)_{n \in \mathbb{N}}\) be a bounded orthogonal family in a Hilbert space \(\mathcal{H}\), i.e. \(\forall m \neq 0 \forall n \langle e_n, e_{n+m} \rangle = 0\). Then \(\lim_{n \to \infty} \langle f, e_n \rangle = 0\), for all \(f \in \mathcal{H}\).
The van der Corput trick

So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(H = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu g) \langle f, e_g \rangle = 0\), for every \(f \in H\).

Bessel’s inequality implies:

Baby van der Corput

Let \((e_n)_{n \in \mathbb{N}}\) be a bounded orthogonal family in a Hilbert space \(H\), i.e. \(\forall m \neq 0 \forall n \langle e_n, e_{n+m} \rangle = 0\). Then \(\lim_{n \to \infty} \langle f, e_n \rangle = 0\), for all \(f \in H\).

Random van der Corput

Let \((G, \mu)\) be a probability group and let \((e_g)_{g \in G}\) be a bounded family in a Hilbert space \(H\) such that the map \((g, h) \mapsto \langle e_g, e_h \rangle\) is \(\mathcal{B}^{(2)}\)-measurable.

\[\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0 \implies (\forall \mu g) \langle f, e_g \rangle = 0, \forall f \in H.\]
The van der Corput trick

So we have a sequence \((e_g)_{g \in G}\) in a Hilbert space \(H = L^2(G, \mu)\) and we need to understand when do we have \((\forall \mu g) \langle f, e_g \rangle = 0\), for every \(f \in H\).

Bessel’s inequality implies:

Baby van der Corput

Let \((e_n)_{n \in \mathbb{N}}\) be a bounded orthogonal family in a Hilbert space \(H\), i.e. \(\forall m \neq 0 \forall n \langle e_n, e_{n+m} \rangle = 0\). Then \(\lim_{n \to \infty} \langle f, e_n \rangle = 0\), for all \(f \in H\).

Random van der Corput

Let \((G, \mu)\) be a probability group and let \((e_g)_{g \in G}\) be a bounded family in a Hilbert space \(H\) such that the map \((g, h) \mapsto \langle e_g, e_h \rangle\) is \(B^2\)-measurable.

\[\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0 \implies (\forall \mu g) \langle f, e_g \rangle = 0, \forall f \in H.\]

Proof. Fubini + a Ramsey argument reduces to the baby case. \(\square\)
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0$.

$$\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx$$
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0$.

\[
\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx
\]

[regrouping] $\Rightarrow \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle, \quad$
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0.$

$$
\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx
$$

[regrouping] = $\langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle,$

$[g_c = g_\ell \circ g_r] = \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle,$
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0$.

$$\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx$$

[regrouping] = $\langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle$,

$[g_c = g_\ell \circ g_r] = \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle$,

[cancellation] = $\langle f_2(h \cdot \ell f_2), g \cdot r f_3(h \cdot c f_3) \rangle$,
Case 2: \(P_c(f_3) = 0 \). Goal: \(\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0 \).

\[
\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx
\]

[regrouping] = \(\langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle \),

\([g_c = g_\ell \circ g_r] = \langle g\cdot \ell f_2(h \cdot \ell f_2), g\cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle \),

[cancellation] = \(\langle f_2(h \cdot \ell f_2), g \cdot r f_3(h \cdot c f_3) \rangle \),

\[
\text{mixing of right translation} \quad \Rightarrow \quad \forall h \forall \mu g \quad = \quad \int_G f_2(h \cdot \ell f_2) d\mu \int_G f_3(h \cdot c f_3) d\mu,
\]
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0$.

\[\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx \]

[regrouping] = $\langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle,$

$[g_c = g_\ell \circ g_r] = \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle,$

[cancellation] = $\langle f_2(h \cdot \ell f_2), g \cdot r f_3(h \cdot c f_3) \rangle,$

\[
\begin{bmatrix}
\text{mixing of right translation} \\
\text{translation} \implies \forall h \forall \mu g
\end{bmatrix} = \int_G f_2(h \cdot \ell f_2)d\mu \int_G f_3(h \cdot c f_3)d\mu.
\]
Case 2: $P_c(f_3) = 0$. Goal: $\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0$.

\[
\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3) dx
\]

[regrouping] $= \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle$,

$[g_c = g_{\ell} \circ g_r] = \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle$,

[cancellation] $= \langle f_2(h \cdot \ell f_2), g \cdot r f_3(h \cdot c f_3) \rangle$,

\[
\begin{bmatrix}
\text{mixing of right translation} \\
\rightarrow \forall h \forall \mu g
\end{bmatrix} = \int_G f_2(h \cdot \ell f_2) d\mu \int_G f_3(h \cdot c f_3) d\mu,
\]

\[
\begin{bmatrix}
\text{mixing of conjugation} \\
\rightarrow \forall \mu h
\end{bmatrix} = \int_G f_2(h \cdot \ell f_2) d\mu \int_G f_3 P_c(f_3) d\mu
\]
Case 2: \(P_c(f_3) = 0 \). Goal: \(\forall \mu h \forall \mu g \langle e_g, e_{gh} \rangle = 0 \).

\[
\langle e_g, e_{gh} \rangle = \int_G (g \cdot \ell f_2)(g \cdot c f_3)((gh) \cdot \ell f_2)((gh) \cdot c f_3)dx
\]

[regrouping] = \(\langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot c f_3(h \cdot c f_3) \rangle \),

[g_c = g \ell \circ g_r] = \langle g \cdot \ell f_2(h \cdot \ell f_2), g \cdot \ell g \cdot r f_3(h \cdot c f_3) \rangle ,

[cancellation] = \langle f_2(h \cdot \ell f_2), g \cdot r f_3(h \cdot c f_3) \rangle ,

\[
\begin{bmatrix}
\text{mixing of right translation} \\
\Rightarrow \forall h \forall \mu g
\end{bmatrix} = \int_G f_2(h \cdot \ell f_2) d\mu \int_G f_3(h \cdot c f_3) d\mu ,
\]

\[
\begin{bmatrix}
\text{mixing of conjugation} \\
\Rightarrow \forall \mu h
\end{bmatrix} = \int_G f_2(h \cdot \ell f_2) d\mu \int_G f_3 P_c(f_3) d\mu = 0 . \quad \Box
\]
THANK YOU