k-DEPENDENCE, DISJOINT MATCHINGS, AND AN EXTENSION OF A THEOREM OF FAVARON

GREGORY J. PULEO

Abstract. A vertex set \(D \) in a graph \(G \) is \(k \)-dependent if \(G[D] \) has maximum degree at most \(k - 1 \), and \(k \)-dominating if every vertex outside \(D \) has at least \(k \) neighbors in \(D \). Favaron [2] proved that if \(D \) is a \(k \)-dependent set maximizing the quantity \(k|D| - |E(G[D])| \), then \(D \) is \(k \)-dominating. We extend this result, showing that such sets satisfy a stronger property: given any ordering \(< \) of \(V(G) - D \), there is a \(k \)-edge-chromatic subgraph of \(G \) in which every vertex \(v \) outside \(D \) has degree at least \(k - d'(v) \), where \(d'(v) \) is the number of earlier neighbors of \(v \) in \(V(G) - D \). Since any vertex outside \(D \) may be taken as a minimal element of \(< \), this implies that \(D \) is \(k \)-dominating.

1. Introduction

A vertex set \(D \) in a graph \(G \) is independent if the induced subgraph \(G[D] \) has no edges. A vertex set is dominating if every vertex of \(G \) either lies in the set, or has a neighbor in the set. Ore [9] observed that any maximal independent set is also a dominating set: by the maximality of the independent set, every vertex outside the set must have a neighbor in the set. Thus, \(\gamma(G) \leq \alpha(G) \) for any graph \(G \), where \(\gamma(G) \) is the size of a smallest dominating set and \(\alpha(G) \) is the size of a largest independent set.

Fink and Jacobson [3, 4] generalized the notions of independence and domination as follows:

Definition 1. For positive integers \(k \), a vertex set \(D \subset V(G) \) is \(k \)-dependent if the induced subgraph \(G[D] \) has maximum degree at most \(k - 1 \). A vertex set \(D \) is \(k \)-dominating if \(|N(v) \cap D| \geq k \) for all \(v \in V(G) - D \).

Fink and Jacobson posed the following question: letting \(\gamma_k(G) \) denote the size of a smallest \(k \)-dominating set in \(G \) and letting \(\alpha_k(G) \) denote the size of a largest \(k \)-dependent set in \(G \), is it true that \(\gamma_k(G) \leq \alpha_k(G) \) for all \(k \)? Setting \(k = 1 \) yields the original inequality \(\gamma(G) \leq \alpha(G) \). However, for \(k > 1 \) it is no longer true that every maximal \(k \)-dependent set is \(k \)-dominating. Favaron [2] answered the question of Fink and Jacobson, using a different notion of “optimality” for \(k \)-dependent sets:

Theorem 2 (Favaron [2]). If \(D \) is a \(k \)-dependent set maximizing the quantity \(k|D| - |E(G[D])| \) (over all \(k \)-dependent sets), then \(D \) is a \(k \)-dominating set.

Since any set of at most \(k \) vertices is a \(k \)-dependent set, it follows that every graph has a set of vertices which is both \(k \)-dependent and \(k \)-dominating, which yields \(\gamma_k(G) \leq \alpha_k(G) \). Theorem 2 motivates the following definition.

Date: June 30, 2014.
Definition 3. For any k-dependent set D, define $\phi_k(D) = k|D| - |E(G[D])|$. A k-optimal set is a k-dependent set maximizing ϕ_k.

The notation $\phi_k(D)$ is borrowed from the survey paper [1]. Our goal in this paper is to extend Theorem 2 by proving that k-optimal sets satisfy a property stronger than k-domination:

Theorem 4. Let D be a k-optimal set in a graph G, let $X = V(G) - D$, and let H be the maximal bipartite subgraph of G with partite sets D and X. If $<$ is an ordering of X, then H has a k-edge-chromatic subgraph M such that $d_M(v) + d^-(v) \geq k$ for all $v \in X$, where $d^-(v) = |\{w \in N(v) \cap X : w < v\}|$.

In particular, since we can take any vertex $v \in V(G) - D$ to be minimal in $<$, Theorem 4 implies that any k-optimal set is k-dominating.

2. Extending Lebensold’s Theorem

Lebensold [7] proved the following generalization of Hall’s Theorem [6]. As Brualdi observed in his review of [7], the theorem is equivalent to a theorem of Fulkerson [5] concerning disjoint permutations in 0,1-matrices. An alternative proof of the theorem, using matroid theory, is due to Murty [8].

Theorem 5 (Lebensold [7]). An X,D-bigraph has k disjoint matchings from X into D, each saturating X, if and only if

$$\sum_{v \in D} \min\{k, |N(v) \cap X_0|\} \geq k|X_0|$$

for every subset $X_0 \subset X$.

We extend the theorem to find necessary and sufficient conditions for the existence of a k-edge-chromatic subgraph in which the vertices of X are allowed to have different degrees.

Lemma 6. Let H be an X,D-bigraph, and write $X = \{v_1, \ldots, v_t\}$. Let k be a positive integer and let d_1, \ldots, d_t be nonnegative integers with all $d_i \leq k$. The following are equivalent:

1) H has a k-edge-chromatic subgraph M such that $d_M(v_i) \geq d_i$ for all i;
2) For every subset $X_0 \subset X$,

$$\sum_{v \in D} \min\{k, |N(v) \cap X_0|\} \geq \sum_{v_i \in X_0} d_i.$$

Theorem 5 is the special case of Lemma 6 obtained when all $d_i = k$. We prove Lemma 6 using Theorem 5, so Theorem 5 is self-strengthening in this sense.

Proof. For each i, let D_i be a set of size $k - d_i$, with all sets D_i disjoint from each other and disjoint from $V(H)$, and let $D' = D \cup D_1 \cup \cdots \cup D_t$. Let H' be the X,D'-bigraph obtained from H by making the vertices in D_i adjacent only to v_i. Consider the following two statements:

1) H' has k edge-disjoint matchings, each saturating X;
2) For every subset $X_0 \subset X$,

$$\sum_{v \in D'} \min\{k, |N(v) \cap X_0|\} \geq k|X_0|.$$
By Theorem 5, (1′) is equivalent to (2′). We prove that (1) is equivalent to (1′) and (2) is equivalent to (2′).

If M_1, \ldots, M_k are edge-disjoint matchings in H' each saturating X, then their restriction to H yields a k-edge-chromatic subgraph M of H with each $d_M(v_i) \geq d_i$. Conversely, any such subgraph of H can be extended to k edge-disjoint matchings in H'. Thus, (1) is equivalent to (1′).

Elements of D_t each contribute 1 to the sum in (2′) when $v_i \in X_0$, and contribute 0 otherwise. This yields
\[\sum_{v \in D'} \min\{k, |N(v) \cap X_0|\} = \sum_{v_i \in X_0} (k - d_i) + \sum_{v \in D} \min\{k, |N(v) \cap X_0|\}, \]
so (2) is equivalent to (2′).

3. PROOF OF THEOREM 4

We first define an operation that we will need in order to prove Theorem 4. The definition is based on Favaron’s proof of Theorem 2. In this section, when T is a vertex set and v is a vertex, we often write $N_T(v)$ for $N(v) \cap T$, and likewise for $d_T(v)$ and $d_T(v)$.

Definition 7. When D is a k-dependent set and v is a vertex of $V(G) - D$ such that $|N_D(v)| < k$, we define the set $D \oplus v$ as follows. Let $A = \{w \in N_D(v): d_X(w) = k - 1\}$, and let S be a maximal independent set in A. We define $D \oplus v$ to be the set $(D - S) \cup \{v\}$.

Definition 8. Suppose that D is a k-dependent set, Z is a set disjoint from D, and $<$ is an order on Z such that $d_Z(v) + d_D(v) < k$ for all $v \in Z$. We define the set $D \oplus Z$ as follows: let z_1, \ldots, z_ℓ be the vertices of Z, written in order according to $<$. Let $D_0 = D$, and for $i \in [\ell]$, let $D_i = D_{i-1} \oplus z_i$. The set $D \oplus Z$ is defined as D_ℓ.

Strictly speaking, the definition of $\oplus <$ depends on the choice of the independent set S when we apply \oplus; however, these choices can be made arbitrarily. The following lemma can be directly extracted from Favaron’s proof of Theorem 2.

Lemma 9 (Favaron). If D is k-dependent and v is a vertex of $V(G) - D$ with $|N_D(v)| < k$, then $D \oplus v$ is a k-dependent set with $\phi_k(D \oplus v) = \phi_k(D) + k - |N_D(v)|$.

Corollary 10. If D is k-dependent, Z is a set disjoint from D, and $<$ is an ordering on Z such that $d_Z(v) + |N_D(v)| < k$ for all $v \in Z$, then $D \oplus Z$ is a k-dependent set with
\[\phi_k(D \oplus Z) \geq \phi_k(D) + k |Z| - \sum_{v \in Z} (|N_D(v)| + d_Z(v)). \]

Proof. Let z_1, \ldots, z_ℓ be the vertices of Z written in order according to $<$, and let D_0, D_1, \ldots, D_ℓ be as in Definition 8. For each i, we have $D_i \subset D \cup \{v_1, \ldots, v_i\}$, which yields
\[|N(v_i) \cap D_{i-1}| \leq |N_D(v)| + d_Z(v) < k. \]
Thus, repeatedly applying Lemma 9 yields
\[\phi_k(D \oplus Z) = \phi_k(D) + k |Z| - \sum_{v \in Z} (|N_D(v)| + d_Z(v)) \geq \phi_k(D) + k |Z| - \sum_{v \in Z} (|N_D(v)| + d_Z(v)). \]
Figure 1. Relationship among the sets D, X, X_0, B, E, A, and C.

Proof of Theorem 4. Let D be a k-dependent set, let $X = V(G) - D$, and let $<$ be an ordering on X. Assuming that there is no k-edge-chromatic subgraph with the desired properties, we construct a k-dependent set D' with $\phi_k(D') > \phi_k(D)$.

Let v_1, \ldots, v_t be the vertices of X, written in order according to $<$. Since there is no k-edge-chromatic subgraph with the desired properties, applying Lemma 6 with $d_i = \max\{0, k - d^-(v)\}$ shows that there is a set $X_0 \subset X$ such that

$$\sum_{v \in D} \min\{k, |N(v) \cap X_0|\} < \sum_{v \in X_0} \max\{0, k - d^-(v)\}.$$

We may assume that $d^-(v) \leq k$ for all $v \in X_0$, since vertices with $d^-(v) > k$ may be removed from X_0 without causing the above inequality to fail. This gives the simpler inequality

$$\sum_{v \in D} \min\{k, |N(v) \cap X_0|\} < k |X_0| - \sum_{v \in X_0} d^-(v).$$

Define sets B, E, A, C by

$$B = \{v \in D: |N(v) \cap X_0| \leq k - 1\},$$
$$E = \{v \in X_0: |N(v) \cap B| + d^-(v) \leq k - 1\},$$
$$A = D - B,$$
$$C = X_0 - E.$$

The relationship among the various sets is illustrated in Figure 1. Let $D' = B \oplus_c E$. We claim that $\phi_k(D') > \phi_k(D)$. By Corollary 10, D' is k-dependent and

$$\phi_k(D') \geq \phi_k(B) + k |E| - \sum_{v \in E} (|N_B(v)| + d^-(v)).$$

Now, observe that

$$\sum_{v \in D} \min\{k, |N_{X_0}(v)|\} = k |A| + \sum_{v \in B} |N_{X_0}(v)|.$$

Thus, from (1),

$$k |A| + \sum_{v \in B} |N_{X_0}(v)| < k |X_0| - \sum_{v \in X_0} d^-(v).$$

Counting the edges incident to B from the endpoints in X_0 yields

$$\sum_{v \in B} |N_{X_0}(v)| = \sum_{v \in C} |N_B(v)| + \sum_{v \in E} |N_B(v)| \geq k |C| - \sum_{v \in C} d^-(v) + \sum_{v \in E} |N_B(v)|,$$
where we have used the fact that $|N_B(v)| + d^-(v) \geq k$ for $v \in C$. Therefore, (2) yields
\[k |A| + k |C| - \sum_{v \in C} d^-(v) + \sum_{v \in E} |N_B(v)| < k |X_0| - \sum_{v \in X_0} d^-(v), \]
which rearranges to
\[0 < -k |A| + k |E| - \sum_{v \in E} (|N_B(v)| + d^-(v)), \]
using twice the fact that $X_0 - C = E$. Since $\phi_k(B) \geq \phi_k(D) - k |A|$, applying Corollary 10 yields
\[\phi_k(D') \geq \phi_k(D) - k |A| + k |E| - \sum_{v \in E} (|N_B(v)| + d^-(v)) > \phi_k(D). \]
Thus, when D is k-optimal, a k-edge-chromatic subgraph with the desired properties exists.

\[\square \]

References