n K (A[x]/(x ),(x)) *in terms of Bokstedt's topological Hochschild homology. In the case of a perfect field k of positive characteristic, this may be used to completely calculate the listed K-groups. Indeed, we show that

n K (k[x]/(x ),(x)) = W (k)/V W (k) 2m-1 nm-1 n m-1the even dimensional groups being zero. Here

W (k) iis the ring of big Witt vectors of length i. The result extends previous calculations by Stienstra and Aisbett of

n K (k[x]/(x ),(x)). 3

- 0162.bib (274 bytes)
- polytope.dvi (107112 bytes) [November 6, 1996]
- polytope.dvi.gz (39299 bytes)
- polytope.pdf (207177 bytes)
- polytope.ps.gz (217008 bytes)

Lars Hesselholt <larsh@math.mit.edu>

Ib Madsen <imadsen@mi.aau.dk>