The hyperkähler geometry of the deformation space of complex projective structures on a surface

Brice Loustau

August 3, 2012
The hyperkähler geometry of $\mathbb{CP}(S)$

Brice Loustau

Outline

1. Complex projective structures
2. The character variety
3. The Schwarzian parametrization
4. The minimal surface parametrization
1 Complex projective structures

2 The character variety

3 The Schwarzian parametrization

4 The minimal surface parametrization
What is a complex projective structure?
What is a complex projective structure?

Let S be a closed oriented surface of genus $g \geq 2$.
What is a complex projective structure?

Let S be a closed oriented surface of genus $g \geq 2$.

Definition

A complex projective structure on S is a (G, X)-structure on S where the model space is $X = \mathbb{CP}^1$ and the Lie group of transformations of X is $G = \text{PSL}_2(\mathbb{C})$.
What is a complex projective structure?

Let S be a closed oriented surface of genus $g \geq 2$.

Definition

A *complex projective structure* on S is a (G, X)-structure on S where the model space is $X = \mathbb{CP}^1$ and the Lie group of transformations of X is $G = \text{PSL}_2(\mathbb{C})$.

\[\gamma = \frac{az + b}{cz + d} \in G = \text{PSL}_2(\mathbb{C}) \]
$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$
Definition

$\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{\text{all } \mathbb{C}P^1\text{-structures on } S\}/\text{Diff}^+_0(S).$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.
The hyperkähler geometry of $\mathbb{CP}(S)$

Brice Loustau

Complex projective structures
The character variety
The Schwarzian parametrization
The minimal surface parametrization

$\mathbb{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

$\mathbb{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathbb{CP}(S) = \{\text{all } \mathbb{CP}^1\text{-structures on } S\}/\text{Diff}_0^+(S).$$

A point $Z \in \mathbb{CP}(S)$ is called a marked complex projective surface.

$\mathbb{CP}(S)$ is a complex manifold of dimension $\dim_{\mathbb{C}} \mathbb{CP}(S) = 6g - 6$.
$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

$\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{\text{all } \mathbb{CP}^1\text{-structures on } S\}/\text{Diff}^+_0(S).$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

$\mathcal{CP}(S)$ is a complex manifold of dimension $\dim_{\mathbb{C}} \mathcal{CP}(S) = 6g - 6$.

Note: A complex projective atlas is in particular a complex atlas on S (transition functions are holomorphic).
$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

$\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{\text{all } \mathbb{CP}^1\text{-structures on } S\}/\text{Diff}^+_0(S) .$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

$\mathcal{CP}(S)$ is a complex manifold of dimension $\dim_{\mathbb{C}} \mathcal{CP}(S) = 6g - 6$.

Note: A complex projective atlas is in particular a complex atlas on S (transition functions are holomorphic).

Definition

There is a forgetful map $p : \mathcal{CP}(S) \to \mathcal{T}(S)$ where

$$\mathcal{T}(S) = \{\text{all complex structures on } S\}/\text{Diff}^+_0(S)$$

is the Teichmüller space of S.
Fuchsian and quasifuchsian structures
Fuchsian and quasifuchsian structures

If any Kleinian group Γ (i.e. discrete subgroup of $PSL_2(\mathbb{C})$) acts freely and properly on some open subset U of \mathbb{CP}^1, the quotient inherits a complex projective structure.
Fuchsian and quasifuchsian structures

If any Kleinian group Γ (i.e. discrete subgroup of $PSL_2(\mathbb{C})$) acts freely and properly on some open subset U of $\mathbb{C}P^1$, the quotient inherits a complex projective structure.

\[
\begin{align*}
\mathbb{C}P^1 & \xrightarrow{\Gamma \subset PSL_2(\mathbb{C})} S
\end{align*}
\]
Fuchsian structures
In particular, any Riemann surface X can be equipped with a compatible \mathbb{CP}^1-structure by the uniformization theorem:

$$X = \mathbb{H}^2$$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a Fuchsian group.
Fuchsian structures

In particular, any Riemann surface X can be equipped with a compatible \mathbb{CP}^1-structure by the uniformization theorem:

$$X = \mathbb{H}^2$$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a Fuchsian group.

Note: This defines a *Fuchsian section* $\sigma_{\mathcal{F}} : \mathcal{T}(S) \to C\mathbb{P}(S)$.
Quasifuchsian structures
Quasifuchsian structures

By Bers’ simultaneous uniformization theorem, given two complex structures \((X^+, X^-) \in \mathcal{T}(S) \times \mathcal{T}(\overline{S})\), there exists a unique Kleinian group \(\Gamma\) such that:
By Bers’ simultaneous uniformization theorem, given two complex structures \((X^+, X^-) \in \mathcal{T}(S) \times \mathcal{T}(\overline{S})\), there exists a unique Kleinian group \(\Gamma\) such that:
1 Complex projective structures
2 The character variety
3 The Schwarzian parametrization
4 The minimal surface parametrization
The hyperkähler geometry of $CP(S)$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

Holonomy
Any complex projective structure \(Z \in \mathcal{CP}(S) \) defines a *holonomy representation* \(\rho : \pi_1(S) \to G = \text{PSL}_2(\mathbb{C}) \).
Any complex projective structure $Z \in \mathcal{CP}(S)$ defines a \textit{holonomy representation} $\rho : \pi_1(S) \to G = \text{PSL}_2(\mathbb{C})$.
The character variety

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization
Holonomy defines a map

$$\text{hol} : \mathcal{CP}(S) \rightarrow \mathcal{X}(S, G) ;$$

where $\mathcal{X}(S, G) = \text{Hom}(\pi_1(S), G) // G$ is the character variety of S.
The character variety

Holonomy defines a map

$$hol : \mathcal{CP}(S) \to \mathcal{X}(S, G) ;$$

where $\mathcal{X}(S, G) = \text{Hom}(\pi_1(S), G)//G$ is the character variety of S. hol is a local biholomorphism.
The character variety

Holonomy defines a map

$$hol : \mathcal{CP}(S) \to \mathcal{X}(S, G);$$

where $\mathcal{X}(S, G) = \text{Hom}(\pi_1(S), G)/\!\!/G$ is the character variety of S. hol is a local biholomorphism.

By a general construction of Goldman, the character variety $\mathcal{X}(S, G)$ enjoys a natural complex symplectic structure ω_G.
The character variety

Holonomy defines a map

$$hol : CP(S) \rightarrow \mathcal{X}(S, G) ;$$

where $\mathcal{X}(S, G) = \text{Hom}(\pi_1(S), G)//G$ is the character variety of S. hol is a local biholomorphism.

By a general construction of Goldman, the character variety $\mathcal{X}(S, G)$ enjoys a natural complex symplectic structure ω_G.

Abusing notations, we also let ω_G denote the complex symplectic structure on $CP(S)$ obtained by pulling back ω_G by the holonomy map $hol : CP(S) \rightarrow \mathcal{X}(S, G)$.
The character variety (continued)
The character variety (continued)

<table>
<thead>
<tr>
<th>Theorem (Goldman)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The restriction of the complex symplectic structure on the Fuchsian slice $\mathcal{F}(S)$ is the Weil-Petersson Kähler form:</td>
</tr>
<tr>
<td>$\sigma_\mathcal{F}(\omega_G) = \omega_{WP}$.</td>
</tr>
</tbody>
</table>
The character variety (continued)

Theorem (Goldman)

The restriction of the complex symplectic structure on the Fuchsian slice $\mathcal{F}(S)$ is the Weil-Petersson Kähler form:

$$\sigma_{\mathcal{F}}^*(\omega_G) = \omega_{WP}.$$

Theorem (Platis, L)

Complex Fenchel-Nielsen coordinates (l_i, τ_i) associated to any pants decomposition are canonical coordinates for the symplectic structure:

$$\omega_G = \sum_{i} dl_i \wedge d\tau_i.$$
Hitchin-Kobayashi correspondence
Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$H_X : \mathcal{X}^0(S, G) \xrightarrow{\sim} \mathcal{M}_{\text{Dol}}^0(X, G)$$

where $\mathcal{M}_{\text{Dol}}^0(X, G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.
Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$H_X : \mathcal{X}^0(S, G) \overset{\sim}{\to} \mathcal{M}^0_{\text{Dol}}(X, G)$$

where $\mathcal{M}^0_{\text{Dol}}(X, G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.

Note: H_X is not holomorphic, in fact:
Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$H_X : \mathcal{X}^0(S, G) \sim \mathcal{M}^0_{\text{Dol}}(X, G)$$

where $\mathcal{M}^0_{\text{Dol}}(X, G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.

Note: H_X is not holomorphic, in fact:

Theorem (Hitchin)

There is a natural hyperkähler structure (g, I, J, K) on $\mathcal{M}^0_{\text{Dol}}(X, G)$. The map H_X is holomorphic with respect to J. It is also a symplectomorphism for the appropriate symplectic structures.
1. Complex projective structures
2. The character variety
3. The Schwarzian parametrization
4. The minimal surface parametrization
The cotangent hyperkähler structure
The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent bundle T^*M is equipped with a canonical complex symplectic structure ω_{can}.
The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent bundle T^*M is equipped with a canonical complex symplectic structure ω_{can}.

Theorem (Feix, Kaledin)

If M is a real-analytic Kähler manifold, then there exists a unique hyperkähler structure in a neighborhood of the zero section in T^*M such that:

- it refines the complex symplectic structure
- it extends the Kähler structure off the zero section
- the $U(1)$-action in the fibers is isometric.
The Schwarzian parametrization
The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p : \mathcal{C} \mathcal{P}(S) \to \mathcal{T}(S)$.
The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
\[p : \mathcal{CP}(S) \to \mathcal{T}(S). \]

The Schwarzian derivative is an operator on maps between projective surfaces such that:
Recall that there is a canonical holomorphic projection $p : \mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

- It turns a fiber $\sim p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T^*_X \mathcal{T}(S)$.

Recall that there is a canonical holomorphic projection $p : \mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

- It turns a fiber $\sim p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T^*_X \mathcal{T}(S)$.
- Globally, $\mathcal{CP}(S) \approx \sigma T^* \mathcal{T}(S)$ but this identification depends on the choice of a “zero section” $\sigma : \mathcal{T}(S) \to \mathcal{CP}(S)$.

The hyperkähler geometry of $\mathbb{CP}(S)$

Brice Loustau

Complex projective structures
The character variety
The Schwarzian parametrization
The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p : \mathbb{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

- It turns a fiber $\sim p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T^*_X \mathcal{T}(S)$.
- Globally, $\mathbb{CP}(S) \approx^\sigma T^* \mathcal{T}(S)$ but this identification depends on the choice of a “zero section” $\sigma : \mathcal{T}(S) \to \mathbb{CP}(S)$.

For each choice of σ, we thus get a symplectic structure ω^σ on the whole space $\mathbb{CP}(S)$ (pulling back ω_{can}) and a hyperkähler structure on some neighborhood of the Fuchsian slice.
The Schwarzian parametrization (continued)
The Schwarzian parametrization (continued)

Theorem (L)

\[\mathcal{CP}(S) \approx^\sigma T^* T(S) \text{ is a complex symplectomorphism iff } \]
\[d(\sigma - \sigma_F) = \omega_{WP} \text{ (on } T(S)) \].
The Schwarzian parametrization (continued)

Theorem (L)

$\mathcal{CP}(S) \approx^\sigma T^* T(S)$ is a complex symplectomorphism iff $d(\sigma - \sigma_F) = \omega_{WP}$ (on $T(S)$).

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

Theorem (Kawai, L)

If σ is a (generalized) Bers section, $\mathcal{CP}(S) \approx^\sigma T^* T(S)$ is a complex symplectomorphism.
The Schwarzian parametrization (continued)

<table>
<thead>
<tr>
<th>Theorem (L)</th>
</tr>
</thead>
</table>
| $\mathcal{CP}(S) \approx^\sigma T^*T(S)$ is a complex symplectomorphism iff $
\text{d}(\sigma - \sigma_F) = \omega_{WP}$ (on $T(S)$). |

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

<table>
<thead>
<tr>
<th>Theorem (Kawai, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If σ is a (generalized) Bers section, $\mathcal{CP}(S) \approx^\sigma T^*T(S)$ is a complex symplectomorphism.</td>
</tr>
</tbody>
</table>
The Schwarzian parametrization (continued)

Consequences:
Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
The Schwarzian parametrization (continued)

Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
The Schwarzian parametrization (continued)

Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
The Schwarzian parametrization
(continued)

Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
 - The hyperkähler structure we get on $CP(S)$ refines the complex symplectic structure,
The Schwarzian parametrization (continued)

Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
 - The hyperkähler structure we get on $CP(S)$ refines the complex symplectic structure,
 - but the new complex structure J depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by $T(S)$.
Consequences:

- Fibers of p and Bers slices are Lagrangian complex submanifolds.

- (generalized) Quasifuchsian reciprocity.

- If σ is elected among Bers sections,
 - The hyperkähler structure we get on $CP(S)$ refines the complex symplectic structure,
 - but the new complex structure J depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by $T(S)$.
 - This is similar to the situation we saw with the Hitchin-Kobayashi correspondence.
The Schwarzian parametrization
(continued)

Consequences:

- Fibers of \(p \) and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If \(\sigma \) is elected among Bers sections,
 - The hyperkähler structure we get on \(CP(S) \) refines the complex symplectic structure,
 - but the new complex structure \(J \) depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by \(T(S) \).
 - This is similar to the situation we saw with the Hitchin-Kobayashi correspondence. Quiz: what is a significant difference though?
1 Complex projective structures

2 The character variety

3 The Schwarzian parametrization

4 The minimal surface parametrization
The minimal surface parametrization
The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S) \subset Q\mathcal{F}(S)$ is a neighborhood of the Fuchsian slice such that if $Z \in \mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ.
The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S) \subset Q\mathcal{F}(S)$ is a neighborhood of the Fuchsian slice such that if $Z \in \mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental form II_Σ are equivalent to the fact that II_Σ is the real part of a unique holomorphic quadratic φ.
The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S) \subset QF(S)$ is a neighborhood of the Fuchsian slice such that if $Z \in \mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental form II_Σ are equivalent to the fact that II_Σ is the real part of a unique holomorphic quadratic φ.

This defines a map

\[
\begin{array}{ccc}
\mathcal{AF}(S) & \rightarrow & T^*T(S) \\
Z & \mapsto & ([I_\Sigma], \varphi)
\end{array}
\]
The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S) \subset \mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z \in \mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental form II_Σ are equivalent to the fact that II_Σ is the real part of a unique holomorphic quadratic φ.

This defines a map $\mathcal{AF}(S) \rightarrow T^*T(S)$

$Z \mapsto ([I_\Sigma], \varphi)$.

It is a diffeomorphism of $\mathcal{AF}(S)$ onto some neighborhood of the zero section of $T^*T(S)$.
The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S) \subset \mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z \in \mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental form II_Σ are equivalent to the fact that II_Σ is the real part of a unique holomorphic quadratic φ.

This defines a map $\mathcal{AF}(S) \to T^*\mathcal{T}(S)$

$Z \mapsto ([I_\Sigma], \varphi)$.

It is a diffeomorphism of $\mathcal{AF}(S)$ onto some neighborhood of the zero section of $T^*\mathcal{T}(S)$.

Again, one can use this “minimal surface parametrization” to pull back the hyperkähler structure of $T^*\mathcal{T}(S)$ on $\mathcal{CP}(S)$.
The minimal surface parametrization (continued)
The minimal surface parametrization (continued)

The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.
The minimal surface parametrization (continued)

The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.

Using arguments of Krasnov-Schlenker to compute the variation of W under an infinitesimal deformation of the metric, one shows:
The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.

Using arguments of Krasnov-Schlenker to compute the variation of W under an infinitesimal deformation of the metric, one shows:

Theorem (L)

The minimal surface parametrization $\mathcal{AF}(S) \xrightarrow{\sim} T^*T(S)$ is a real symplectomorphism (for the appropriate symplectic structures).